zufällige Doku

Universum – Die Jagd nach den Grenzen


Die Kosmologie (griechisch κοσμολογία — hier: die Lehre von der Welt) beschäftigt sich mit dem Ursprung, der Entwicklung und der grundlegenden Struktur des Universums (Kosmos) als Ganzem und ist damit ein Teilgebiet sowohl der Physik, der Astronomie als auch der Philosophie. Ihren Ursprung hat die Kosmologie im mythischen und religiösen Bereich (siehe auch Schöpfung und Eschatologie). Die physikalische Kosmologie beschreibt das Universum mittels physikalischer Gesetzmäßigkeiten. Dabei ist besonders die heute beobachtete, ungleichmäßige Verteilung der Galaxien und Galaxienhaufen im Nahbereich des sonst räumlich, aber nicht zeitlich homogenen und isotropen, expandierenden Universums zu verstehen. Die signifikante Haufenbildung, mit großen dazwischenliegenden Leerräumen (Voids), führt dazu, dass man von einem „klumpigen“ Universum spricht. Die größte bisher entdeckte Struktur, die Sloan Great Wall, ist ca. 1,37 Mrd. Lichtjahre lang. Weiterhin muss eine umfassende Kosmologie die insgesamt vorhandene Flachheit (euklidischer Raum), die zeitlich unterschiedlichen Strukturen (Strahlung, Quasare, Galaxien), die Kosmische Hintergrundstrahlung, die als Expansion des Universums gedeutete Rotverschiebung des Lichts, die numerischen Werte der Naturkonstanten und die Häufigkeit der chemischen Elemente im Universum zusammenfassend beschreiben. Das Standard- oder Urknallmodell der Kosmologie ist die heute anerkannte kosmologische Theorie, die viele beobachtete Phänomene beschreibt. Darin wird von einem unendlich heißen und dichten Frühzustand des Universums ausgegangen, dem sogenannten Urknall. Es wird vor allem von drei Beobachtungen bestätigt: 1. Häufigkeit der Elemente: In der primordialen Nukleosynthese (englisch Big Bang Nucleosynthesis) kurz nach dem Urknall (10-2 s) war das Universum so heiß, dass Materie in Quarks und Gluonen aufgelöst war. Durch die Expansion und Abkühlung des Universums entstanden Protonen und Neutronen. Nach ca. 1 Sekunde verschmolzen aus Protonen und Neutronen die Kerne leichter Elemente (Deuterium, 3He, 4He, 7Li). Dieser Prozess endete nach etwa 3 Minuten. Es wurden also die relativen Häufigkeiten der Elemente vor der Bildung der ersten Sterne festgelegt. 2. Kosmische Hintergrundstrahlung (engl. cosmic microwave background radiation CMBR): 1946 von George Gamow postuliert, wurde sie 1964 durch Arno Penzias und Robert Woodrow Wilson entdeckt — mit einer mittleren Temperatur von 725 Kelvin. Die Hintergrundstrahlung stammt aus der Zeit ca. 300.000 Jahre nach dem Urknall, als das Universum etwa 1/1000 seiner heutigen Größe hatte. Das ist auch der Zeitpunkt, an dem das Weltall transparent wurde; vorher bestand es aus undurchsichtigem ionisiertem Gas. Messungen durch COBE, BALOON, WMAP. 3. Expansion des Universums: Edwin Hubble konnte 1929 die Expansion des Weltalls nachweisen, da Galaxien mit wachsender Entfernung eine zunehmende Rotverschiebung in den Spektrallinien zeigen. Proportionalitätsfaktor ist die Hubble-Konstante H, deren Wert bei 71 (± 4) km/s Mpc-1 angenommen wird (Stand 2004). H ist eigentlich keine Konstante, sondern verändert sich mit der Zeit — invers proportional zum Alter des Universums. Wir stehen auch nicht im Mittelpunkt der Expansion — der Raum selbst dehnt sich überall gleichmäßig aus (isotropes Universum). Durch Zurückrechnen der Expansion kann man das Alter des Universums (siehe auch Hubble-Zeit) bestimmen: Ist die Hubble-Konstante korrekt, so liegt es bei etwa 13,7 Milliarden Jahren. Auch aufgrund der bisher von der Sonde WMAP gewonnenen Daten und Supernova-Beobachtungen geht man inzwischen von einem offenen, beschleunigt expandierenden Universum mit einem Alter von 13,7 Mrd. Jahren aus.

#weltall #physik #astronomie #sterne