zufällige Doku

Mathematik – Funktionsterme


In der Mathematik ist eine Funktion oder Abbildung eine Beziehung (Relation) zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-Wert) genau ein Element der anderen Menge (Funktionswert, abhängige Variable, y-Wert) zuordnet. Das Konzept der Funktion oder Abbildung nimmt in der modernen Mathematik eine zentrale Stellung ein; es enthält als Spezialfälle unter anderem parametrische Kurven, Skalar- und Vektorfelder, Transformationen, Operationen, Operatoren und vieles mehr. Das Nebeneinander der Begriffe „Funktion“ und „Abbildung“ ist nur historisch zu verstehen. Der Begriff „Funktion“, 1694 von Leibniz eingeführt, wurde zunächst als formelmäßige Rechenvorschrift aufgefasst, zum Beispiel y = x2 oder f(x) = sin x. In der Schulmathematik wurde dieser naive Funktionsbegriff bis weit in die zweite Hälfte des 20. Jahrhunderts beibehalten. Bisweilen wurden auch mehrwertige Funktionen, zum Beispiel eine im Vorzeichen unbestimmte Quadratwurzelfunktion, zugelassen. Erst als die Analysis im 19. Jahrhundert mit einem exakten Grenzwertbegriff auf eine neue Grundlage gestellt wurde, entdeckten Weierstraß, Dedekind und andere, dass Grenzwerte unendlicher Folgen „klassischer“ Funktionen sprunghaft sein können und sich nicht immer durch „geschlossene“ Formeln (mit endlich vielen Rechenoperationen) ausdrücken lassen. Das erzwang eine schrittweise Ausweitung des Funktionsbegriffs. Davon unabhängig wurde im 19. Jahrhundert die Gruppentheorie begründet, mit der man systematisch untersuchen kann, wie sich algebraische Gleichungen unter der Wirkung aufeinanderfolgender Transformationen verändern. Bei der Anwendung dieser Theorie auf geometrische Probleme wurden gleichbedeutend mit „Transformation“ auch die Begriffe „Bewegung“ und „Abbildung“ gebraucht. Als Anfang des 20. Jahrhunderts die Grundlagen der Mathematik einheitlich in der Sprache der Mengenlehre formuliert wurden, stellten sich die Begriffe „Funktion“ und „Abbildung“ dann als deckungsgleich heraus. Im Sprachgebrauch wirken die unterschiedlichen Traditionen jedoch fort. In der Analysis spricht man heute häufig noch von Funktionen, während man in der Algebra und in der Geometrie von Abbildungen spricht. Einige Mathematiker unterscheiden auch heute noch streng zwischen einer Abbildung und einer Funktion. Diese verstehen unter einer Funktion eine Abbildung in den reellen oder komplexen Zahlenkörper. Weitere Synonyme für „Funktion“ in spezielleren Zusammenhängen sind unter anderem Operator in der Analysis, Operation, Verknüpfung und Morphismus in der Algebra. Heute sehen manche Autoren den Funktionsbegriff nicht unbedingt auf Mengen beschränkt an, sondern lassen jede aus geordneten Paaren bestehende Klasse, die keine verschiedenen Elemente mit gleicher linker Komponente enthält, als Funktion gelten Mengentheoretisch ausgedrückt werden Funktionen also als „rechtseindeutige Relationen“ definiert.

#Mathematik